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Trace Elements in Tree Rings: Evidence of Recent and 

Historical Air Pollution 

Abstract. Annual growth rinks from short-leaf pine trees in the Great Smoky 
Mountains National Park show suppressed growth and increased iron content 
between 1863 and 1912, a period of smelting activity and large sulfur dioxide releases 
at Copperhill, Tennessee, 88 kilometers upwind. Similar growth suppression and 
increases of iron and other metals were found in rings formed in the past 20 to 25 
years, a period when regional fossil fuel combustion emissions increased about 200 
percent. Metals concentrations in phloem and cambium are high, but whether they 
exceed toxic thresholds for these tissues is not known. 

Our investigations with short-leaf pine 
(Pinus echinata) in East Tennessee have 
shown increasing concentrations of trace 
metals in annual growth rings since the 
1950's and relatively high concentrations 
in the cambial area. For most elements, 
ring content was serially correlated with 
growth; however, since the 1970's met-
als content in rings increased while 
growth rate decreased. In the Great 
Smoky Mountains National Park 
(GSMNP) iron not only increased since 
the 1950's, as did regional increases in 
fossil fuel combustion emissions, but 
also between 1863 and 1912 when trees 
may have been exposed to SO2 and 
combustion products from copper ore 
smelting at Copperhill, Tennessee.  
These observations suggest that multiel-

ement analysis of tree rings can provide 
information on temporal changes in air 
pollution, acid deposition, or both. 

Tree rings have been used to construct 
records of climate (1), document heavy 
metal pollution (2–4), and study the rela-
tion between growth and air pollution 
(5). Now they are being used to examine 
the relation between growth and acid 
rain (6). Ulrich (7) proposed that acid 
precipitation increases concentrations of 
Al and Fe in the soil solution. If such an 
increase is reflected in the chemical com-
position of wood, then patterns of 
change of these and other metals in tree 
rings could be used to infer temporal 
changes in rain acidity and associated 
increased metals deposition from burning 
of fossil fuels in recent years (8). We
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looked for evidence of increased regional 
atmospheric pollution in eight hardwood 
and six coniferous species in East Ten-
nessee. 

Trees were sampled with increment 
corers at several sites near Oak Ridge, 
Tennessee, and in the GSMNP, and mul-
tielement analysis was performed by in-
ductively coupled plasma optical emis-
sion spectroscopy (9). For most ele-
ments, analytical accuracy was at least 
80 percent (10), but our recovery of Fe 
(46 percent) and Al (71 percent) from 
National Bureau of Standards (NBS) or-
chard and citrus leaves and pine needles 
was incomplete; however, analytical 
precision for all metals was very good. 
Because precision was good and because 
temporal patterns of trace metals in wood 
were very similar among trees of a 
stand, confidence in temporal patterns is 
high. However, based on the NBS stan-
dards, the metals concentrations that we 
report may underestimate actual levels. 

At all sites, the highest trace metals 
concentrations were found in living phlo-
em plus cambium tissues. Such concen-
trations of Al (200 to 690 ppm), Cd (0.47 
to 7.5 ppm), Mn (150 to 450 ppm), and Zn 
(27 to 120 ppm) in aboveground tissues 
of agricultural or herbaceous plants are 
reported to be toxic (11), but whether 
such concentrations are toxic in these 
tree tissues is not known. At all sites 
short-leaf pine are now growing at 0.6 to 
0.8 mm/year, compared to initial rates of 
1.6 to 7.3 mm/year (Fig. 1). However, no 
statistically significant (12) correlations 
between current tree growth rate and 
trace metals concentrations in the phlo-
em plus cambium were found. Whether 
metals concentrations of such magnitude 
in living tree tissues are potentially of 
concern is not yet clear. 

The highest ring concentrations were 
found in the most recently formed rings, 
and a roughly twofold increase in Fe and 
Ti concentrations since the 1950’s at 
Cades Cove in the GSMNP (Fig. 1) and 
similar increases of Al, Cu, Mn, and Zn at 
all sites since the 1970's was evident. 
Reconstruction of SO2 emissions upwind 
of Cades Cove shows a roughly 200 
percent increase since the 1950’s (Fig. 
1). We found no statistically significant 
site differences in concentrations of Al, 
Cd, Cu, Mn, and Zn in phloem plus 
cambium, but found significantly higher 
Cu (twofold), Fe (20-fold), and Zn (40-
fold) in 1978 through 1983 rings 1.4 and 
16 km downwind of the 1700 MW Kings-
ton Steam Plant than at the other Oak 
Ridge or GSMNP sites. This latter obser-
vation and the similarity in SO2 emis-
sions and increases of Fe and Ti concen-
tration at Cades Cove underscore the

potential importance of fossil fuel com-
bustion emissions as a source of trace 
metals in recently formed rings. 

At Cades Cove a strong growth sup-
pression occurred from about 1863 to 
1912, with the lowest rate of 0.55 mm/ 
year around 1895. The recent (post-
1960’s) growth declines have been ob-
served elsewhere and are widespread in 
the Northeast (13), but the 1863–1912 
decline in the GSMNP appears to be a 
local occurrence. This 50-year growth 
suppression was also observed in the 
other species sampled in the GSMNP but 
not in short-leaf pine (14) at Norris, 
Tennessee (Fig. 1), nor in any trees near 
Oak Ridge. Temporally, the decline is 
coincident with uncontrolled emissions of 
SO2 and combustion products from 
smelting of ore containing Fe and Cu 
sulfides at Copperhill, Tennessee, which 
contributed to the destruction of all veg-
etation within 16 km of Copperhill (15). 
Prevailing surface winds entering the 
GSMNP during the growing season fol-
low the northeast-tending valleys of the 
Appalachian Mountains from the Copper 
Basin to the GSMNP (16). 

Periods of growth decline, both recent 
and historical, have often corresponded 

 
Fig. 1. Mean growth rate of short-leaf pine at four sites in East Tennessee, mean Fe and Ti 
concentrations in short-leaf pine at Cades Cove, Great Smoky Mountains National Park, and 
estimated SO2 emissions from within 900 km southeast-southwest of Cades Cove (8), Error bars 
represent the standard error of the mean (of eight trees at Cades Cove, Walker Branch 
Watershed, and Melton Hill and ten trees at Norris, Tennessee); MT, metric tons. 

to increased concentrations of metals 
such as Fe and Ti (Fig. 1). Because of 
this relation and the variation in growth 
among sites, we factored out growth by 
multiplying elemental concentration and 
growth rate (microgram of element per 
gram of wood × gram of wood per year 
= microgram of element per year), yield-
ing “xylem accumulation rates” of ele-
ments into ring segments (Fig. 2). This 
measure represents annual ring content 
or burden (total annual accumulation) 
and was useful in further analyzing his-
torical patterns. 

For some elements there were strong 
relationships between growth and xylem 
accumulation rate. For Ca, Mn, and Zn 
at Cades Cove, the correlations between 
the 1833 through 1983 xylem accumula-
tion rate and growth were positive 
(r2 = 0.85, 0.90, and 0.85, respectively); 
Cd and Cu had weaker positive correla-
tions between the two (r2 = 0.51 and 
0.39, respectively); and for Al, the rela-
tionship was positive before 1953 (r2 = 
0.64) but not after 1953 (r2 = 0.026). 
For Fe, Mo, and Ti, poor correlations 
between growth and accumulation rates 
(r2 = 0.062,0.28, and 0.0004, respective-
ly) indicated either alternative influences 
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Fig, 2. Mean xylem accumulation rates of four 
elements in short-leaf pine from Cades Cove, 
Great Smoky Mountains National Park. Error 
bars represent the standard error of the mean 
(of eight trees). Zinc shows a strong correla-
tion with growth, as does Al until recent 
times, which may be indicative of a recent 
change in Al availability. Iron shows very 
poor correlation with growth but may be 
responsive to the influences of SO2 from 
Copperhill. Molybdenum shows a pattern 
suggestive of translocation from younger to 
older rings. 

on uptake or across-ring translocation. 
At Cades Cove, an increased Fe xylem 

accumulation rate coincided with growth 
suppression during the Copperhill era 
and since the early 1950’s. Similar in-
creases occurred for Al and Cd since the 
1960’s and for Cu, Mo, and Ti since the 
1970’s. At the Oak Ridge sites, the same 
historical relation between the xylem ac-
cumulation rate and growth rate were 
observed, except the increases in xylem 
accumulation rate that are coincident 
with decreases in growth rate began after 
the 1970’s for all elements, including Ca, 
Mn, and Zn. Such a change in the rela-
tion between growth and xylem accumu-
lation rates parallels recent changes in 
availability of these trace metals to trees. 
For Al, Cd, Cu, and Zn, combustion 
sources have significantly added to natu-
ral sources in recent years, both in the 
Oak Ridge area (17) and regionally (8). 
For Fe, accumulation rate increases may 
reflect change in soil Fe availability, 
from acid deposition (18), because the Fe 
accumulation rate, unlike any other ele-
ment, increased during the Copperhill 
era and since the late 1950’s. 

Interpretation of trace metals patterns 
in tree rings would be compromised by 
lateral translocation subsequent to initial 
incorporation in ring tissues. If there was 
translocation from older to younger 
rings, then older trees should have high-
er concentrations or xylem accumulation 
rates in recent rings than younger trees. 
Recent work with Virginia pine (Pinus 
virginiana) has shown the opposite (19). 
Robitaille (4) found no evidence of trans-
location of Cu and Zn in balsam fir 
(Abies balsamea) near a copper smelter 
in Eastern Canada. In our study, the 
serial correlations between growth and 
xylem accumulation rate argue against 
across-ring translocation of Al, Ca, Cd, 
Cu, Mn, and Zn. Translocation in years 
following formation of historical rings 
would smooth out year-to-year variabili-
ty in trace-metals content, and any cor-
relation between growth and xylem ac-
cumulation rate would likely be lost. 
Models of translocation from younger to 
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